Using an interrupt in a machine learning application

I’m using Arduino nano 33 ble sense to create a multifunctional home smart system, the system has two main functionalities: Voice recognition for the phrases “lights on” and “lights off” using machine learning and a fire detection system using a fire flame sensor. The voice recognition part is working fine for me, however for the fire detection system I’m trying to use an interrupt to trigger a buzzer once a fire is detected and for some reason the interrupt is not working at all. Can you please guide me on what wrong am i doing?
My code:

#include <PDM.h>
#include <embedded-systems_inferencing.h>

/** Audio buffers, pointers and selectors */
typedef struct {
    int16_t *buffer;
    uint8_t buf_ready;
    uint32_t buf_count;
    uint32_t n_samples;
} inference_t;

static inference_t inference;
static signed short sampleBuffer[2048];
static bool debug_nn = false; // Set this to true to see e.g. features generated from the raw signal
static byte light = 13;
static byte buzzer = 8;
const byte interruptPin = 2;
/**
 * @brief      Arduino setup function
 */
void setup()
{
    // put your setup code here, to run once:
    Serial.begin(115200);
    pinMode(buzzer, OUTPUT);
    attachInterrupt(digitalPinToInterrupt(interruptPin), fire, RISING);
    // comment out the below line to cancel the wait for USB connection (needed for native USB)
    while (!Serial);
    Serial.println("Edge Impulse Inferencing Demo");

    // summary of inferencing settings (from model_metadata.h)
    ei_printf("Inferencing settings:\n");
    ei_printf("\tInterval: %.2f ms.\n", (float)EI_CLASSIFIER_INTERVAL_MS);
    ei_printf("\tFrame size: %d\n", EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE);
    ei_printf("\tSample length: %d ms.\n", EI_CLASSIFIER_RAW_SAMPLE_COUNT / 16);
    ei_printf("\tNo. of classes: %d\n", sizeof(ei_classifier_inferencing_categories) / sizeof(ei_classifier_inferencing_categories[0]));

    if (microphone_inference_start(EI_CLASSIFIER_RAW_SAMPLE_COUNT) == false) {
        ei_printf("ERR: Could not allocate audio buffer (size %d), this could be due to the window length of your model\r\n", EI_CLASSIFIER_RAW_SAMPLE_COUNT);
        return;
    }
}

/**
 * @brief      Arduino main function. Runs the inferencing loop.
 */
void loop()
{
  int label=0;

  float best_prediction=0;

  ei_printf("Starting inferencing in 2 seconds...\n");

    delay(2000);

    ei_printf("Recording...\n");

    bool m = microphone_inference_record();
    if (!m) {
        ei_printf("ERR: Failed to record audio...\n");
        return;
    }

    ei_printf("Recording done\n");

    signal_t signal;
    signal.total_length = EI_CLASSIFIER_RAW_SAMPLE_COUNT;
    signal.get_data = &microphone_audio_signal_get_data;
    ei_impulse_result_t result = { 0 };

    EI_IMPULSE_ERROR r = run_classifier(&signal, &result, debug_nn);
    if (r != EI_IMPULSE_OK) {
        ei_printf("ERR: Failed to run classifier (%d)\n", r);
        return;
    }

    // print the predictions
    ei_printf("Predictions ");
    ei_printf("(DSP: %d ms., Classification: %d ms., Anomaly: %d ms.)",
        result.timing.dsp, result.timing.classification, result.timing.anomaly);
    ei_printf(": \n");
    for (size_t ix = 0; ix < EI_CLASSIFIER_LABEL_COUNT; ix++) {
        ei_printf("    %s: %.5f\n", result.classification[ix].label, result.classification[ix].value);
        if (result.classification[ix].value > best_prediction){
          best_prediction =result.classification[ix].value;
          label=ix;}
    }
    ei_printf("final prediction: %s\n",result.classification[label].label);
    // get the prediciton result and implement the command
    if (result.classification[label].label == "lightson"){
        digitalWrite(light, HIGH);}
      else if (result.classification[label].label == "lightsoff"){
          digitalWrite(light, LOW);
          }

#if EI_CLASSIFIER_HAS_ANOMALY == 1
    ei_printf("    anomaly score: %.3f\n", result.anomaly);
#endif
}

/**
 * @brief      PDM buffer full callback
 *             Get data and call audio thread callback
 */
static void pdm_data_ready_inference_callback(void)
{
    int bytesAvailable = PDM.available();

    // read into the sample buffer
    int bytesRead = PDM.read((char *)&sampleBuffer[0], bytesAvailable);

    if (inference.buf_ready == 0) {
        for(int i = 0; i < bytesRead>>1; i++) {
            inference.buffer[inference.buf_count++] = sampleBuffer[i];

            if(inference.buf_count >= inference.n_samples) {
                inference.buf_count = 0;
                inference.buf_ready = 1;
                break;
            }
        }
    }
}

/**
 * @brief      Init inferencing struct and setup/start PDM
 *
 * @param[in]  n_samples  The n samples
 *
 * @return     { description_of_the_return_value }
 */
static bool microphone_inference_start(uint32_t n_samples)
{
    inference.buffer = (int16_t *)malloc(n_samples * sizeof(int16_t));

    if(inference.buffer == NULL) {
        return false;
    }

    inference.buf_count  = 0;
    inference.n_samples  = n_samples;
    inference.buf_ready  = 0;

    // configure the data receive callback
    PDM.onReceive(&pdm_data_ready_inference_callback);

    PDM.setBufferSize(4096);

    // initialize PDM with:
    // - one channel (mono mode)
    // - a 16 kHz sample rate
    if (!PDM.begin(1, EI_CLASSIFIER_FREQUENCY)) {
        ei_printf("Failed to start PDM!");
        microphone_inference_end();

        return false;
    }

    // set the gain, defaults to 20
    PDM.setGain(127);

    return true;
}

/**
 * @brief      Wait on new data
 *
 * @return     True when finished
 */
static bool microphone_inference_record(void)
{
    inference.buf_ready = 0;
    inference.buf_count = 0;

    while(inference.buf_ready == 0) {
        delay(10);
    }

    return true;
}

/**
 * Get raw audio signal data
 */
static int microphone_audio_signal_get_data(size_t offset, size_t length, float *out_ptr)
{
    numpy::int16_to_float(&inference.buffer[offset], out_ptr, length);

    return 0;
}

/**
 * @brief      Stop PDM and release buffers
 */
static void microphone_inference_end(void)
{
    PDM.end();
    free(inference.buffer);
}

static void notify_user(){
  // send a notification to the user about the fire
 
}

static void fire(){
  // trigger the buzzer in case of fire + send a notification to the user about the fire
  ei_printf("FIRE DETECTED");
  digitalWrite(buzzer, HIGH); // Send 1KHz sound signal...
  notify_user();
}


#if !defined(EI_CLASSIFIER_SENSOR) || EI_CLASSIFIER_SENSOR != EI_CLASSIFIER_SENSOR_MICROPHONE
#error "Invalid model for current sensor."
#endif

Hi @soyraghda,

I recommend removing all of the sound detection and inference code to see if the interrupt pin will trigger the ISR. Let us know if that works for you.

i removed everything and i kept a simple string to print in the loop along with the interrupt, when the interrupt is triggered the program stops printing the string in the loop but nothing else is happening, the program is not printing the string inside the interrupt function

Hi @soyraghda,

Putting Serial.println() inside an ISR is generally a bad idea. You want to keep ISRs as short as possible, and Serial.print functions are slow. Because the Nano firmware is built on mbed, you also risk causing deadlock. Please see this thread for more info: Serial.Print inside Interrupt - Programming Questions - Arduino Forum