I downloaded the model in tensorflow lite format via the dashboard tab. It seems that in this form there is no a processing block(?) and the features must be given already pre-processed. Is there any way to implement this so that I can use spectral analysis and provide raw data to the model?
This is how i try to test the model:
import numpy as np
import tensorflow as tf
model_path = “/path/to/model”
interpreter = tf.lite.Interpreter(model_path=model_path)
interpreter.allocate_tensors()
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
accelerometer_data = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
input_data = np.expand_dims(accelerometer_data, axis=0)
interpreter.set_tensor(input_details[0][‘index’], input_data.astype(np.float32))
interpreter.invoke()
output_data = interpreter.get_tensor(output_details[0][‘index’])
predicted_class = np.argmax(output_data)
print(“Model Output:”, output_data)
print(f"Predicted Class: {predicted_class}")