Deployed Model Not Printing Anything

Hello everyone,

I am using a Sony Spresense and am having trouble deploying my model onto the board. When I use live classification, with the board camera, I am getting proper results. However, when I bundle it as an Arduino library and try to deploy, there is no output on the bounding box. I am basically trying to use FOMO to classify a rectangle and a square.
Model-Used: FOMO
Target: Sony Spresense
Environment: Arduino
Link: Symbol4 - Dashboard - Edge Impulse
This is the output (on loop):

Timing: DSP 10 ms, inference 1167 ms, anomaly 0 ms
Object detection bounding boxes:
Edge Impulse standalone inferencing (Arduino)
run_classifier returned: 0
Timing: DSP 10 ms, inference 1167 ms, anomaly 0 ms
Object detection bounding boxes:
Edge Impulse standalone inferencing (Arduino)
run_classifier returned: 0

Should I retrain my model or modify anything?

I tried all this:

  1. Changed the printf statement content to an integer, from a float.
  2. Added a print("continue") statement to the continue section of the if(bb.value==0) statement. This printed continue multiple times, indicating that the bb.value is 0.

The model works perfectly on webcam and Spresense when using live classification.

This is the Arduino code:

/* Edge Impulse ingestion SDK
 * Copyright (c) 2022 EdgeImpulse Inc.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *
 */

/* Includes ---------------------------------------------------------------- */
#include <Symbol4_inferencing.h>

static const float features[] = {
  //Add image feature here
};

/**
 * @brief      Copy raw feature data in out_ptr
 *             Function called by inference library
 *
 * @param[in]  offset   The offset
 * @param[in]  length   The length
 * @param      out_ptr  The out pointer
 *
 * @return     0
 */
int raw_feature_get_data(size_t offset, size_t length, float *out_ptr) {
    memcpy(out_ptr, features + offset, length * sizeof(float));
    return 0;
}

void print_inference_result(ei_impulse_result_t result);

/**
 * @brief      Arduino setup function
 */
void setup()
{
    // put your setup code here, to run once:
    Serial.begin(115200);
    // comment out the below line to cancel the wait for USB connection (needed for native USB)
    while (!Serial);
    Serial.println("Edge Impulse Inferencing Demo");
}

/**
 * @brief      Arduino main function
 */
void loop()
{
    ei_printf("Edge Impulse standalone inferencing (Arduino)\n");

    if (sizeof(features) / sizeof(float) != EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE) {
        ei_printf("The size of your 'features' array is not correct. Expected %lu items, but had %lu\n",
            EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE, sizeof(features) / sizeof(float));
        delay(1000);
        return;
    }

    ei_impulse_result_t result = { 0 };

    // the features are stored into flash, and we don't want to load everything into RAM
    signal_t features_signal;
    features_signal.total_length = sizeof(features) / sizeof(features[0]);
    features_signal.get_data = &raw_feature_get_data;

    // invoke the impulse
    EI_IMPULSE_ERROR res = run_classifier(&features_signal, &result, false /* debug */);
    if (res != EI_IMPULSE_OK) {
        ei_printf("ERR: Failed to run classifier (%d)\n", res);
        return;
    }

    // print inference return code
    ei_printf("run_classifier returned: %d\r\n", res);
    print_inference_result(result);

    delay(1000);
}

void print_inference_result(ei_impulse_result_t result) {

    // Print how long it took to perform inference
    ei_printf("Timing: DSP %d ms, inference %d ms, anomaly %d ms\r\n",
            result.timing.dsp,
            result.timing.classification,
            result.timing.anomaly);

    // Print the prediction results (object detection)
#if EI_CLASSIFIER_OBJECT_DETECTION == 1
    ei_printf("Object detection bounding boxes:\r\n");
    for (uint32_t i = 0; i < result.bounding_boxes_count; i++) {
        ei_impulse_result_bounding_box_t bb = result.bounding_boxes[i];
        if (bb.value == 0) {
          ///  continue;
        }
        ei_printf("Printing this...");
        ei_printf("  %s (%d) [ x: %u, y: %u, width: %u, height: %u ]\r\n",
                bb.label,
                static_cast<int>(bb.value),
                bb.x,
                bb.y,
                bb.width,
                bb.height);
    }

    // Print the prediction results (classification)
#else
    ei_printf("Predictions:\r\n");
    for (uint16_t i = 0; i < EI_CLASSIFIER_LABEL_COUNT; i++) {
        ei_printf("  %s: ", ei_classifier_inferencing_categories[i]);
        ei_printf("%.5f\r\n", result.classification[i].value);
    }
#endif

    // Print anomaly result (if it exists)
#if EI_CLASSIFIER_HAS_ANOMALY
    ei_printf("Anomaly prediction: %.3f\r\n", result.anomaly);
#endif

#if EI_CLASSIFIER_HAS_VISUAL_ANOMALY
    ei_printf("Visual anomalies:\r\n");
    for (uint32_t i = 0; i < result.visual_ad_count; i++) {
        ei_impulse_result_bounding_box_t bb = result.visual_ad_grid_cells[i];
        if (bb.value == 0) {
            continue;
        }
        ei_printf("  %s (%f) [ x: %u, y: %u, width: %u, height: %u ]\r\n",
                bb.label,
                bb.value,
                bb.x,
                bb.y,
                bb.width,
                bb.height);
    }
#endif

}

(I have removed the image features to shorten the length of the code)

Kindly help me out.